Dianne Nowack, Michael Fischbacher,

Is there a McGurk effect in German tense vowels?

1. Background

- McGurk effect: The influence of visual cues on the perception of speech signals (McGurk \& MacDonald, 1976)
audio signal \neq visual information \rightarrow possibility of third sound percept - an articulatory/acoustic "merger" (auditory /b/ + visual $/ \mathrm{g} / \rightarrow / \mathrm{d} /$).
- Listeners rely on visual cues to differentiate rounded from unrounded high, front vowels (Traunmüller \& Öhrström 2007; Kleber et al., 2010)
- Perception of openness is less affected by visual cues (Traunmüller \& Öhrström, 2007)

2. Hypotheses

H1 There is a McGurk effect for the German tense vowel sets $/ \mathrm{i}$, e, $\varepsilon /(=$ open) \& li, y, u (=rounded). Listeners perceive a merger when audio and visual information do not match.

H2 The McGurk effect is more pronounced for the set $\mathrm{f}, \mathrm{y}, \mathrm{u} /$ i.e. more mergers in the perception of vowels that differ in lip rounding.

H3 The McGurk effect is more
pronounced for a /t/ context in the $/ \mathrm{i}, \mathrm{y}, \mathrm{u} /$ set because here
the $/ y$-ul-contrast is diminished due to /ul-fronting
(e.g. Kleber et al., 2010)

3. Method

Materials

Video \& audio recordings of the sets /i, e, $\varepsilon /$ and /i, $y, u /$ as well as /tit, tyt, tut/ and /pip, pyp, pup/

Stimuli

- Mute, only-audio, dubbed and crossdubbed stimuli within each set
- Pink noise added to all audio files

Participants \& Task

- German speakers (21-55 yrs)
- 12 for $/ i, \mathrm{e}, \varepsilon /$ set and 12 for $/ \mathrm{i}, \mathrm{y}, \mathrm{u} /$
- Three-alternative forced-choice task run in E-Prime

4. Results

The data were statistically analysed with two GLMM: dependent variables $=$ merger (true $=/ \mathrm{e}, \mathrm{y} / \mathrm{vs}$. false $=/ \mathrm{i}, \varepsilon, \mathrm{u} /$), fixed factors $=$ stimulus and - depending on the analysis - listener group (/i, e, $\varepsilon /$ vs. /i, y, u/) or context (/t/ vs. /p/).

5. Discussion

- li, e, $\varepsilon /$ can already be distinguished without sound input
- /y, u/ could hardly be distinguished without sound input

- /i- $\varepsilon /$ vs. $/ \varepsilon-i /$:

Listeners rely mostly on audio signal; majority of /i/ responses in $/ \varepsilon-\mathrm{i} /$ presumably due to the fact that /e/ and /i/ are acoustically close and /e/ and $/ \varepsilon /$ are visually similar

- /i-u/ vs. /u-i/:

Very few /y/ responses in /i-u/ \rightarrow large discrepancy between audio and video signal \rightarrow listeners rely either on audio OR on video signal McGurk effect only in /u-i/ because /u/-video and /i/-audio are similar to $/ \mathrm{y} /$

